

Improved cloud height retrieval for AIRS/IASI assimilation and model validation

Louis Garand, Ovidiu Pancrati, Sylvain Heilliette Environment Canada NASA Sounder Science Team Meeting 13-16 October 2009, Greenbelt MD

Research goals

- From real and simulated AIRS radiances, review the cloud parameter retrieval (CO2-slicing) in order to:
 - better understand strengths/limitations
 - improve quality control of AIRS/IASI radiances
 - provide objective means to validate model cloud height/amount distributions

Basic tool: cloud parameters from 4 sources, all at AIRS obs locations:

- directly from model output
- from simulated AIRS, apply CO2-slicing
- from real AIRS apply CO2-slicing
- lidar CALIPSO height observations

Applying same retrieval technique to both real and simulated Data eliminates ambiguity of definitions between obs/model

CO₂-slicing – minimum residual methods

- Dates back to 80s (Menzell et al 1983, Eyre and Menzell, 1989)
- Still the only methods to retrieve equivalent cloud height and amount from single IR FOVs
- Based on radiance ratio of 2 channels, assuming same cloud emissivity, solves for effective height and amount

Issues:

- Channel pair selection
- Assumption on emissivity ratio unity
- Identification of reliable results

Selection of channels not affected by clouds for assimilation

- IASI assimilation setup inspired from AIRS assimilation setup (assimilated operationally at CMC since June 2008)
- Assimilation of cloud unaffected radiances:

Revision of CO2-slicing to get cloud height and amount

following this study

- 13 radiance pairs used, all in range 13.2-14.1 μm
- Median value of height retained with corresponding effective amount

before

 Original implementation for AIRS in 2004 used 12 pairs with channel 528 (12.2 μm) used in all pairs. Mean retained.

elsewhere

Environnement

 Several centers use a window channel like 787 (10.9 μm) as reference channel.

Use a 11 micron reference channel paired with a CO₂ channel 12.5-14 micron?

Advantages

- 11 micron channel sees all clouds
- May improve detection of low clouds

Disadvantages

- cloud emissivity ratio not unity: could it be modeled?
- channel pairs are not independent
- subject to surface temperature errors more so than using a channel peaking at ~1 km

Recent availability of cloudy RTM allows to study the issue

Cloud emissivity ratio can be far from unity Ex: 13.3/10.9 micron ratio reaches 1.2

11 mm height vs ratio

Ratio vs 11 μm BT(787)

ratio vs equivalent Cloud amount Ne

Environnement

Canada

Simulated AIRS cloudy radiances

- Uses RTTOV-CLD. Model state from global (35 km) model interpolated at obs location, 6-h or 12h fcsts.
- AIRS center FOV (in assimilation warmest, but this is not suitable for climatology of clouds parameters)
- Definitions of effective model parameters
 - height: corresponds to model height where 11 micron cloud transmittance from TOA reaches 0.9
 - amount: 1 total cloud transmittance, set to zero if < 0.1

Impact of channel pair selection. Model output (true) height versus retrieved from simulated radiances

Configuration with 12 channels coupled to a reference profile peaking near the surface Channel # Wavenumber 204 707.770 221 712.661 232 715.862 252 721.758 262 724.742 272 727.752 299 735.298 305 737.152 310 738.704 355 752.970 362 755.237 475 801.001 Reference channel 787 917.209

Assuming emissivity ratio = 1.0 Std excluding outsiders: 1.14 km

Emissivity ratio considerations

Initial configuration: 12 channels coupled with a reference profile peaking near the surface Channel # Wavenumber 204 707.770 221 712.661 232 715.862 252 721.758 262 724.742 272 727.752 299 735.298 305 737.152 310 738.704 355 752.970 362 755.237 475 801.001

Reference channel

Emissivity ratio fitted to Ne found in first iteration of Co2-slicing

Std excluding outsiders: 1.06 km

787

917.209

Cloud emissivity ratio considerations

Chosen configuration: 13 pairs of coupled channels In narrow limited range

in narrow iiii			nted range	
	Channel		Reference channel	
Pair #	#	cm ⁻¹	#	cm ⁻¹
1	204	707.770	252	721.758
2	221	712.661	262	724.742
3	232	715.862	272	727.752
4	252	721.758	299	735.298
5	262	724.742	305	737.152
6	272	727.752	310	738.704
7	299	735.298	355	752.970
8	305	737.152	362	755.237
9	310	738.704	375	759.485
10	355	752.970	375	759.485
11	362	755.237	262	724.742
12	375	759.485	252	721.758
13	375	759.485	204	707.770

All pairs in range 707-760 cm-1 Std excluding outsiders: 0.94 km

Impact: Ref channel AIRS-528 (820 cm-1), mean of 13 pairs vs all pairs in range 797-760 cm-1, median height of 13 pairs, 120h forecasts vs raobs

Model output height vs retrieved from simulated AIRS (left)

CALIPSO height vs retrieved from real AIRS (right) July 15, 2008

-90° ≤ Latitude ≤ +90°

Remarkable similitude in dynamic range and bias attributed to CO2 slicing technique. Implies definition of model height OK.

-90° ≤ Latitude < -65°

-65° ≤ Latitude < -40°

+40° ≤ Latitude < +65°

+65° ≤ Latitude ≤ +90°

Model validation

 Comparing height distributions from CO2-slicing applied to both real and simulated data superior to comparing model output height to retrieved height: cancellation of biases induced by retrieval technique.

Note: when Co2-slicing fails (~10 % of cases) the effective height is used by matching window temperature to guess temperature profile, assuming overcast.

Goal: provide meaningful information to modeler on cloud Parameters and a tool for evaluation

Cloud height distributions leading to model validation, here global data

Validation in Tropics (15S-15N) indicating lack of mid level clouds 3-8 km in model.

Validation in Arctic, 65-90 N, model distribution is too flat

Validation results: monthly maps of cloud parameters.

Cloud Top Pressure (July 2008)

Cloud parameters comparison with MODIS

Environnement

Canada

Source: MODIS science team

Canadä

Focus on Arctic area:

Cloud Top Pressure (July 2008)

Focus on Arctic area: comparison with MODIS

Conclusion

- Co2-slicing revision confirms it is best to limit range to 13.1-14.2 μm, use independent pairs and retain median. This Impacts on radiance quality control.
- Proposed model definition of cloud top corresponds to physical height inferred from lidar Calipso data.
- Height bias increases with height to reach ~2 km at 16 km. This
 can be accounted for.
- Model validation tool developed based on CO2-slicing applied to both real and proxy data provides useful information on model vertical cloud distribution deficiencies.
- Monthly height distributions from AIRS compare well with MODIS, but amount distributions differ due to nature of retrieval (0-1 values for MODIS, lack of overcast cases for Co2-slicing).

Environnement

Canada

